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Locally anisotropic gauge theories for semisimple and nonsemisimple groups are 
examined. A gauge approach to generalized Lagrange gravity based on local 
linear and affine structural groups is proposed. 

1. INTRODUCTION 

Despite the charm and success of general relativity there are some 
fundamental problems still unsolved in the framework of this theory. Here 
we point out the undetermined status of singularities, the problem of formula- 
tion of conservation laws in curved spaces, and the unrenormalizability of 
quantum gravitational interactions. To overcome these defects a number of 
authors (see, for example, Walner, 1985; Tseytlin, 1982; Luehr and Rosen- 
baum, 1980; Ponomarev et  al.,  1985; Aldovandi and Stadile, 1984) tended 
to reconsider and reformulate gravitational theory as a gauge model similar 
to the theories of weak, electromagnetic, and strong forces. But, in spite of 
theoretical arguments and the attractive appearance of different proposed 
models of gauge gravity, the possibility and manner of interpretation of 
gravity as a kind of gauge interaction remain unclear. 

The work of Popov and Daikhin (1975, 1976; Popov, 1975) is distin- 
guished among other gauge approaches to gravity. Popov and Daikhin did 
not advance a gauge extension, or modification, of general relativity; they 
obtained an equivalent reformulation (such as well-known tetrad or spinoril 
variants) of the Einstein equations as Yang-Mills equations for correspond- 
ingly induced Cartan connections (Bishop and Crittenden, 1965) in the affine 
frame bundle on the pseudo-Riemannian space-time. This result was used in 
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solving some specific problems in mathematical physics, for example, for 
formulation of a twistor-gauge interpretation of gravity and of nearly auto- 
parallel conservation laws on curved spaces (Vacaru, 1987, 1993, 1994). It 
has also an important conceptual role. On one hand, it points to a possible 
unified treatment of gauge and gravitational fields in the language of linear 
connections in corresponding bundle spaces. On the other, it emphasizes that 
the two types of fundamental interactions mentioned essentially differ one 
from another, even if we admit for both of them a common gaugelike formal- 
ism, because if to Yang-Mills fields one associates semisimple gauge groups, 
to gauge treatments of Einstein gravitational fields one has to introduce into 
consideration nonsemisimple gauge groups. 

Recent developments in theoretical physics suggest the idea that a more 
adequate description of radiational, statistical, and relativistic optic effects 
in classical and quantum gravity requires extensions of the geometrical back- 
grounds of theories (Vlasov, 1966; Vacaru et aI., 1994; Miron and Kawaguchi, 
1991) by introducing into consideration spaces with local anisotropy and 
formulating corresponding variants of Lagrange and Finsler gravity (Miron 
and Anastasiei, 1993; Matsumoto, 1986; Asanov and Ponomarenko, 1989; 
Miron, 1985). 

The aim of this work is twofold. The first objective is to formulate a 
geometrical approach to interactions of Yang-Mills fields on spaces with 
local anisotropy in the framework of the theory of linear connections in 
vector bundles (with semisimple structural groups) on generalized Lagrange 
spaces (Miron and Anastasiei, 1993). The second objective is to extend the 
geometrical formalism in a manner including theories with nonsemisimple 
groups which permit a unique fiber bundle treatment for both locally aniso- 
tropic Yang-Mills and gravitational interactions. In general lines, we shall 
follow the ideas and geometrical methods proposed in Tseytlin (1982), Pono- 
marev et al. (1985), Popov (1975), and Popov and Daikhin (1975, 1976), but 
we shall apply them in a form convenient for introducing into consideration 
geometrical constructions and physical theories on Lagrange and Finsler 
spaces. 

One of the most important results of this paper is formulated as a theorem 
(see Section 5) stating that Miron's almost Hermitian Lagrange gravity (Miron 
and Anastasiei, 1993) is equivalent to a gaugelike theory in the bundle of 
affine adapted frames on generalized Lagrange spaces. This allows us a 
straightforward application of mathematical methods and computational tech- 
niques developed in the gauge field theories for construction of solutions of 
gravitational field equations describing gravitational gauge instantons with 
local anisotropy, and formulation and study of quantum and statistical models 
of physical interactions on curved, locally anisotropic spaces [first results 
are contained in Vacaru (1995a,b)]. 
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The presentation is organized as follows: 
Section 2 is a brief introduction in the Miron almost Hermitian model of 

generalized Lagrange geometry and corresponding extension of the Einstein 
theory. In Section 3 we give a geometrical interpretation of gauge (Yang- 
Mills) fields on generalized Lagrange spaces. Section 4 contains a geometrical 
definition of anisotropic Yang-Mills equations; the variational proof of gauge 
field equations is considered in connection with the "pure" geometrical 
method of introducing field equations. In Section 5 the generalized Lagrange 
gravity is equivalently reformulated as a gauge theory for nonsemisimple 
groups. A model of nonlinear de Sitter gauge gravity with local anisotropy 
is formulated in Section 6. We define gravitational gauge instantons with 
local anisotropy in Section 7. An outlook and conclusions are given in 
Section 8. 

2. MIRON'S  A L M O S T  HERMITIAN M O D E L  OF 
G E N E R A L I Z E D  L A G R A N G E  G E O M E T R Y  

The goal of this section is to introduce the basic notations and definitions 
as well to present a brief review of the results on Lagrange and Finsler 
geometry necessary for our further considerations (Miron and Kawaguchi, 
1991; Miron and Anastasiei, 1993; Matsumoto, 1986; Asanov and Ponoma- 
renko, 1989; Miron, 1985). 

Let M be a differentiable manifold of dimension n, dim M = m, and 
TM its tangent bundle (differentiable means class C ~ differentiability of 
functions). Local coordinates on open regions U C M and ~ C T M  are 
denoted, respectively, as x = (x i) and u = (x, y) = u ~ = (x i, y )  = (x i, yq~), 
where Greek cumulative indices are used for values on TM and Latin indices 
i, j, (i) = 1, 2 . . . . .  n distinguish components of geometrical objects on base 
and fiber subspaces on TM. 

A Lagrangian on M is a differentiable function ~ :  T M  ---> R, where R 
is the real number field, given locally as ~:  (x, y) ---> ~(x, y) with the property 
that the tensorial distinguished field [d-field (Miron and Anastasiei, 1993)] 

i Oz~ 
gij(x, y) - 2 0 y i O y  (1) 

is nondegenerate. 
A pair (M, ~ )  forms a Lagrange space L n with gij(x, y) and ~ called, 

respectively, the fundamental tensor and fundamental function. 

Remark  1. We obtain a Finsler space (M, L) as a particular case if 
= L z, where L is the Finsler metric on M. 
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Miron (1985) and Miron and Anastasiei (1993) proposed to generalize 
the geometrical constructions in Finsler and Lagrange geometry by intro- 
ducing into consideration arbitrary nonhomogeneous fundamental tensors 
gij(x, y)  not obligatorily generated by the fundamental function ~ (or L 2) as 
in (1). 

Defini t ion 1. A generalized Lagrange metric is a second-order covar- 
iant tensorial and nondegenerate d-field gij(x,  y)  on M. The pair M "  = 
(M, gij(x, y))  is a generalized Lagrange space (GL-space). 

We shall also use the tensorial d-field giJ(x, y)  defined as satisfying 
the conditions 

gij(x, y)gkJ(x, y)  = 8~ 

In the total space of bundle T M  we fix a nonlinear connection N = 
{N}(x,  y)} defining a covariant derivation of vector A = AJsj  in direction 
X = X i O/Ox i, 

x'[ ~ } 
O x A  = i Ox i + N { ( x , A )  Sj (2) 

where Sj is a basis of local linear sections of T M  on M; components Ni (x ,  
A) are differentiable on x ~ and A j. 

We shall consider decompositions of geometrical objects according to 
a locally adapted (to nonlinear connection N) basis denoted as 

X~ = (X~, X m )  - ~u ~ 

where 

Xi - ~x ~ - Ox ~ a y '  X~j) - ~yj - aY j 

alOx i and a/ay / are the usual partial derivations. The basis dual to (3) 

X ~ = (X i, X C j)) = gu ~ = (Bx ~, By j )  (4) 

is defined by components X i = 8x i = dx  i and 

X (j) = By j = dy j + N~(u) dx  i 

where dx / and d ~  are, respectively, the usual differentials of variables x i and 
yJ. The bases (3) and (4) are nonholonomic. We calculate nonholonomy 
coefficients by using commutations of vectors (3): 

[x~, x~] = x ~ x ~  - x ~ x ~  = w % ~ X .  (5) 
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It is convenient to introduce in the total space of TM the linear normal 
d-connection compatible with the fundamental tensor on GL-space LF(N) = 
(L}k, C~k) with components induced by N~/(x, y), gij(x, y), and arbitrary given 
torsions L!ik -- L~j = T!jk, C!jk -- C!kj = S!jk: 

L!jk(x, y) = ~ gir + gx j gx k + grhT}k -- gjhTh, rk + gkhThjr 

1 ir/Ogjr Ogkr Ogjk 
C{jk(x, y) = ~ g ~ y k  + Oyj Oyr + grhS}~ -- gjhSh, rk + gkhShj~) (6) 

We point out that for a given nonlinear connection N we can naturally 
determine an almost complex structure F on TM (Miron and Anastasiei, 
1993; Miron, 1985) with the property F 2 = - I ,  where 

F(~/~x i) = -O/Oy i, F(O/Oy i) = g/~x i 

Components N}(x, y) on TM uniquely induce a metric structure G on 
TM, called the N-lift on TM of the GL-metric gq(x, y), defined by the equation 

- ~ -  N~ O y '  

or, in components, Gq - N~Gkj = 0. 
With respect to the basis (4), the metric G on TM is written as 

G(x, y) = G~(u~)~u ~ | ~u ~ 

--= gij(X, y)dx ~ | dxJ + gij(x, y)gyi | gyj (7) 

Definition 2 (Miron, 1985; Miron and Anastasiei, 1993). The space 
H zn = (TM, G, F)  is called the almost Hermitian N-model of the GL-space 
M" = (M, gq(x, y)) endowed with nonlinear connection Nki(x, y). 

N 
By V we denote the almost Hermitian linear covariant derivation [the 

N 

N-lift on TM of the LF(N) connection (6)] with coefficients F ~  defined by 

N N 

Vxox~ = F%~X~ (8) 

Using local adapted bases (3) and (4), we can distinguish components of 
N 

connection F ' ~  and nonholonomy coefficients w ~  from (5): 

N N N N 

F}k = L~, F'(i)~ = O, F/j(k~ = O, F'(/)(k~ = 0 

N N N N 

rj(~ = O, = O, r(i~(~ = O, rr = k F(~ -(~)(k~ Cj~ (9) 
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and, respectively, 

W } k  O,  i = -~" W (.j) k O,  

kv (i a N }  gNik 
j k  = R } k  - ~ x  k a x  ~ , 

i = 0 ,  i = 0 ,  . (i) = 0 W j(k)  W (j)(k) w ( j )k  

w(i) _ oxik . (i) -- ~  (10) 
( j )k  aN j ' w ( j)(k)  Oyk 

N 

We point out that the metric (7) is compatible with the V-connection, 
N 

i.e., V~G~v = O. 
N N N 

The torsion T(X~,, X~) = T'~.yXo, and the curvature R(X~, X.flX~ = 
N N 

R~~ of the connection V are defined in the usual manner: 

N N N 

T ~  = F ' ~  - F ~  + w ' ~  (11) 

and, respectively, 

N N 

R~.~ = X~F'~ (12) 
N N N N N N 

_ _  c ~  q0 - X~F%~ + F.~F~.~a F.~F%~ + F ~w~a  

N N N 

Now, introducing the Ricci, R~,~ = R~, ~. ~,  and scalar curvature, R = G ~a 
s 
R~ ,  fields, we can write the Einstein equations on HZn-spaces: 

N 1 N N 

R~,f3 - ~ G , ~ R  = KT,~ (13) 

N 

where K is the gravitational constant and T~ is the H2n-energy-momentum 
N 

tensor of matter. Here we emphasize that T~  do not satisfy the conserva- 
tion law 

N N 

V~T~ = 0 

because N(N 1N) 
, 0  

H2n-space-time will be considered as the base space for our fiber bundle 
approach to locally anisotropic gauge and gravitational interactions. 

3. G A U G E  FIELDS O N  H2n-SPACES 

This section is devoted to formulation of the geometrical background 
for gauge field theories on spaces with local anisotropy. 
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Let (P, 7r, Gr, H 2") be a principal bundle on base H 2n with structural 
group Gr and surjective map ~: P ---) H ~'. At every point u = (x, y) ~ H 2" 
there is a vicinity OR C H an, u ~ OR, with trivializing P diffeomorphisms f 
and q~: 

fi~: ~-I(OR) ._.) OR X a t ,  f ( p )  = (~(p) ,  q~(p)) 

~p~: w-I(OR) ~ Gr, q~(pq) = q~(p)q, Vq ~ Gr, p E P 

We remark that in the general case for two open regions 

oR, %" C H 2", OR n ~ :/= (~,fo,]l,i p =/= f~bp' e v e n p  ~ ~ A ~ .  

Transition functions g ~  are defined as 

g~tv: ~ n 3/ ~ Gr, g~tv(u) = q~t(p)(q~v(p))-l, .rr(p) = u 

Trivialization generates local sections: 

S~: OR --) q ' r - l (~ ) ,  S~(b/) = p~padp) - l ,  w(p )  = u 

Hereafter we shall omit, for simplicity, the specification of trivializing 
regions of maps and denote, for example, f --- fat, q~ --= q~, s --- s~, if this 
will not give rise to ambiguities. 

Let 0 be the canonical left invariant 1-form on Gr with values in algebra 
Lie ~ of group Gr uniquely defined from the relation 0(q) = q, Vq E N, 
and consider a 1-form ~o on ~ C H 2" with values in N. Using 0 and to, we 
can locally define the connection form Ft in P as a 1-form: 

f~ = ~p*0 + Ad ~p-l('rr*o~) (14) 

where ~p*0 and "rr*to are, respectively, forms induced on "rr-l(~ and P by 
maps q~ and ~ and m = s*fX The adjoint action on a form h with values in 
~3 is defined as 

(Ad q~-lX)p = (Ad ~-l(p))}kp 
where hp is the value of form X at point p E P. 

Introducing a basis {Aa} in N (index fi enumerates the generators making 
up this basis), we write the 1-form to on H 2n as 

co = Aa~oa(u), ma(u) = o~(u)6u ~ (15) 

where 6u ~ = (gx ~, gy~) is a local adapted basis on H 2" and the Einstein 
summation rule on indices fi and Ix is used. Functions ~o~(u) = o~(x, y) from 
(15) will be called the components of Yang-Mills  fields on H2"-space. Gauge 
transforms of o~ can be geometrically interpreted as transition relations for 
~o~ and ~ov, when u ~ ~ 71 ~ ,  

(oo~). = (g~v0) .  + Ad gat~(u)-~(tov). (16) 



1962 Vacaru and Goncharenko 

a with a covariant derivation we shall consider a vector To relate ~o~ 
bundle E associated to P. Let p: Gr ~ GL(R "~) and P': ~ ~ End(E m) be, 
respectively, linear representations of  group Gr and Lie algebra ~ (in a more 
general case we can consider C m instead of Rm). Map p defines a left action 
on Gr and associated vector bundle E = P • Rm/Gr, "rre: E --~ H ~. Introducing 
the standard basis ~ / =  {~1, ~2 . . . . .  ~m_} in R ' ,  we can define the right action 
on P • R m, ((p, ~)q = (pq, p(q-l)~), q E Gr), the map induced from P 

p:  R m ~ "ITEI(/,/), (p(~) = (p~)Gr, ~ E R m, "rr(p) = u) 

and a basis of local sections ei: U ~ ~r~l(U), ei(u) = s(u)l~_. Every section 
~: H z" ~ E can be written locally as ~ = Eie, ., 4 [ ~ C~(at). To every vector 
field X on H 2n and Yang-Mills  field o~ a on P we associate operators of  
covariant derivations: 

Vx~ = ei[X~ i- + B(X))~i] 

B(X) = (p'X)aoJa(X) (17) 

Transformation laws (16) and operators (17) are interrelated by these transition 
transforms for values ei_, ~, and B~: 

eVi (u) = [pgatv(u)]!e~ 

B~(u) = [Pgatv(u)]-t~[pg~v(u)] 

+ [pg~tv(u)]-'B~(u)[pgat~(u)] (18) 

where B~(u) = B~(8/~u~)(u). 
Using (18), we can verify that the operator 7~,  acting on sections of 

"rre: E ~ H 2" according to definition (17), satisfies the properties 

~t fever V},x+fzv = f,V~x + 

= + (xf)  

= vv , u at  n f , ,  f2 c (at) 

So, we can conclude that the Yang-Mills  connection in the vector bundle 
"rrE: E ~ H 2n is not a general one, but is induced from the principal bundle 
"rr: P ~ H 2n with structural group Gr. 

The curvature ~ of the connection l ]  from (14) is defined as 

= DI2, D =/-1 o d (19) 

where d is the operator of exterior derivation acting on q~-valued forms as 
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d(Aa O X a) = Aa O d• a and / : / i s  the horizontal projecting operator acting, 
for example, on the 1-form h as (/lh)p(Xp) = ~.p(HpXp), where Hp projects 
on the horizontal subspace 3gp e Pr [Xp e 3~p is equivalent to f2p(X,) = 0]. 
We can express (19) locally as 

where 

(20) 

1 
~ = &o~ + ~ [~o~,, ~o~] (21) 

The exterior product of N-valued forms from (21) is defined as 

[Ae | X a, A~ @ ~'~] = [Aa, &] @ X a ^ X ~ 

where the antisymmetric tensorial product is 

x a ^ ~; = x@ - ~ x  a 

Introducing structural coefficients fae a of N satisfying 

[At,, Ae] = f~,eaAa 

we can rewrite (21) in a form more convenient for local considerations: 

~ = Aa | ~a~Gu~ A Gu ~ (22) 

Go~, geoa~ 1 a f i e  
- -  __ Okv(.O ~) ~ a  8u ~ ~u ~ + ~f~e (t%mv b e 

where 

This section ends by considering the problem of reduction of the local 
anisotropic gauge symmetries and gauge fields to isotropic ones. For local 
trivial considerations we can consider that the vanishing of dependences on 
y variables leads to isotropic Yang-Mills fields with the same gauge group 
as in the anisotropic case. Global geometric constructions require a more 
rigorous topological study of possible obstacles for reduction of total spaces 
and structural groups on anisotropic bases to their analogs on isotropic (for 
example, pseudo-Riemannian) base spaces. 

4. Y A N G - M I L L S  EQUATIONS FOR G A U G E  FIELDS ON 
H2"-SPACES 

Interior gauge (nongravitational) symmetries are associated to semisim- 
ple structural groups. On the principal bundle (P, w, Gr, H z') with nondegener- 
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ate Killing form for the semisimple group Gr we can define the generalized 
Lagrange metric 

hp(Xp, Yp) = G~(p)(d~pXp, darpYp) + K ( ~ p ( X p ) ,  ~ p ( X e ) )  (23) 

where d'rrp is the differential of map 'rr: P --+ Hen, G.~o) is locally generated 
as the H2n-metric (7), and K is the Killing form on q~: 

K(Aa, At;) = f[,aef~e a = Kab 

Using the metric G,~ on H 2n [hp(X~ Yp) on P], we can introduce operators 
*o and ~c acting in the space of forms on H 2n (% and 8h acting on forms 
on H 2n with values in ~). Let e L be orthonormalized frames on ~ C H zn 
and e r the adjoint coframes. Locally 

G = ~ ~q(ix)e ~ | e ~ 
I* 

where "qr = "q(t*) = ---1, t* = 1, 2 . . . . .  2n, and the Hodge operator *c 
can be defined as *c: At(H2n) --+ A2n-~(H2n), or, in explicit form, as 

*a(e  ~' ^ "'" ^ e ~r) = "q(v0 "'" qq(v2n-~) 

sign(: 2 . . . . . .  
1 ]'L2 " " " ] 'LrP 1 " " " l ~ 2 n -  r 

X e ~ ^ . . .  ^ e v2n-r (24) 

Next, define the operator 

*G 1 = ~ ( 1 ) " ' "  "q(2n)(--l) r(2n-r) *G 

and introduce the scalar product on forms [31,132 . . . .  C Ar(H 2n) with com- 
pact carrier: 

(131, 132) = "q(1) . . .  qq(2n) I [31 ^ *6 132 

The operator 8c is defined as the adjoint to d associated to the scalar product 
for forms, specified for r-forms as 

8G = ( - 1 )  ~ . a l  o d o  *c  (25) 

We remark that operators *h and 8h acting in the total space of  P can 
be defined similarly to (24) and (25), but by using metric (23). Both these 
operators also act in the space of ~-valued forms: 

,(Ae | ,,pe) = Aa | (,tpe) 

g(A e | ,,pe) = Ae O g~pe 
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The form k on P with values in ~ is called (1) horizontal i f / t k  = k 
and (2) equivariant if R*(q)k = Ad q-l% k/q ~ Gr, R(q) being the right 
shift on P. We can verify that equivariant and horizontal forms also satisfy 
the conditions 

k = Ad tp~tl(xr*k), k0u = S~tk 

(koT)~t = Ad(gatv(u))-I(kat). 

Now, we can define the field equations for curvature (20) and connec- 
tion (14): 

A ~  = 0 (26) 

V9  = 0 (27) 

where A = / 7 / o  gh. Equations (26) are similar to the well-known Maxwell 
equations and for non-Abelian gauge fields and are called Yang-Mills equa- 
tions. The structural equations (27) are called Bianchi identities. 

The field equations (26) do not have a physical meaning because they 
are written in the total space of bundle E and not on the base anisotropic 
space-time H 2". But this difficulty may be obviated by projecting the men- 
tioned equations on the base. The 1-form A ~  is horizontal by definition and 
its equivariance follows from the right invariance of metric (23). So, there 
is a unique form (A~)~ satisfying 

A~  = Ad q~lxr*(A~)gt 

Projection of (26) on the base can be written as (A~)~t = 0. To calculate 
(A~)at, we use the equality (Bishop and Crittenden, 1965; Popov and Daik- 
hin, 1976) 

d(Ad qg~k) = Ad q~g~ dk - -  [q~0, Ad q~tk] (28) 

where k is a form on P with values in ~5. For r-forms we have 

~(Ad q0~ulX) = Ad q00~tgk - ( - 1 )  r :#h[q0att0, :~h Ad q~utk] 

and, as a consequence, 

~ = Ad q~l{~hlr*,~ + *~-l['rr*toat, *hTr*~]} 

-- *hl[f~, Ad qo~ 1 *h('rr*~)] (29) 

By using straightforward calculations in the adapted dual basis on 7r-1(~) 
we can verify the equalities 

[i-l, Ad r *h(W*~at)] = 0, /7/Sh(aX*~t) = "rr*(~a~) 

:#h l['Ti'*('O~' :~h('W*~ztl)] = 71"*{ :~GI[00~, * G ~ ]  } (30) 
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From (29) and (30) it follows that 

(A~)~ = ~ G ~  + *a-J[to~, *G~] (31) 

Taking into account (31) and (25), we prove that projection on H 2n of 
equations (26) and (27) can be expressed respectively as 

,~l o d o * G ~  + *~l[co~t, *G~at] = 0 (32) 

d ~ t  + [oJ~t, ~a~] = 0 (33) 

Equations (32) [see (31)] are gauge-invariant because 

(A~)~t = Ad gfft~(A~)v 

By using formulas (22)-(25) we can rewrite (32) in coordinate form 

N 

Vv(GVX~ax~) + f~eaG'~Xtoxb~,,~ = 0 (34) 

N 

where V, is the covariant derivation on H2n-space [see (8)]. 
It is possible to distinguish the x and y parts of equations (34) by using 

formulas (7)-(19). 
We point out that for bundles with semisimple structural groups the 

Yang-Mills equations (26) [and, as a consequence, their horizontal projections 
(32) or (34)] can be obtained by variation of the action 

I = f ~a~,,~;',~f~Gr ff,] KRI3[ 1/2 dx ~ . . .  dx"Sy ~ . . .  ~y" (35) 

Equations for extremals of (35) have the form 

N 

K~;,GX~ - Kd, GK'~G'4~f~i~oj~,~f~ = 0 (36) 

which are equivalent to "pure" geometric equations (34) [or (32)] due to 
nondegeneration of the Killing form Kn; for semisimple groups. 

To take into account gauge interactions with matter fields (section of 
vector bundle E on H zn) we have to introduce a source 1-form ~ in equations 
(26) and to write them as 

A y  = ~ (37) 

Explicit constructions of ~ require concrete definitions of the bundle 
E; for example, for spinoril fields an invariant formulation of the Dirac 
equations on Hen-spaces is necessary. We omit spinoril considerations in this 
work, but we shall present the definition of the source ~ for gravitational 
interactions (by using the energy-momentum tensor of matter on H2n-space) 
in the next section. 
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5. GENERALIZED LAGRANGE GRAVITY AS A GAUGE 
THEORY FOR NONSEMISIMPLE GROUPS 

A considerable body of work on the formulation of gauge gravitational 
models on isotropic spaces is based on using nonsemisimple groups, for 
example, Poincar6 and affine groups, as structural gauge groups [see critical 
analysis and original results in Walner (1985), Tseytlin (1982), Luehr and 
Rosenbaum (1980), and Ponomarev et al. (1985)]. The main impediment to 
developing such models is caused by the degeneration of Killing forms for 
nonsemisimple groups, which make it impossible to construct consistent 
variational gauge field theories ]functional, (35), and extremal equations, 
(36), are degenerate in these cases]. There are at least two possibilities to 
get around the mentioned difficulty. The first is to realize a minimal extension 
of the nonsemisimple group to a semisimple one, similar to the extension of 
the Poincar6 group to the de Sitter group considered in Tseytlin (1982), 
Ponomarev (1985), Popov and Daikhin (1975) and Asanov and Ponomarenko 
(1989) (in the next section we shall use this operation for the definition of 
anisotropic gravitational instantons). The second possibility is to introduce 
into consideration the bundle of adapted affine frames on H 2~, to use an 
auxiliary nondegenerate bilinear form aa~ instead of the degenerate Killing 
form K~, and to consider a "pure" geometric method, illustrated in the 
previous section, of defining gauge field equations. Projecting on the base 
H 2", we shall obtain gauge gravitational field equations on GL-space having 
a form similar to Yang-Mills equations. 

The goal of this section is to prove that a specific parametrization of 
components of the Cartan connection (1) in the bundle of adapted affine 
frames on H 2n establishes an equivalence between Yang-Mills equations (37) 
and Einstein equations (13) on H2"-spaces. 

5.1. The Bundle of Adapted Linear Frames on H2n: ~a = (La(H2n), 
GLn+n(R), H 2n) 

Let (X~). = (Xi, Xu)).  be an adapted frame [see (3) and (4)] at point u 
H 2n. We consider a local right distinguished action of matrices 

,t 0 
A~, ~ = ,~ ) C GLn+n = GL(n, R) O GL(n, R) 

Nondegenerate matrices A i  ,i and B j  respectively transform linearly X;B. into 
Xi,  lu = Ai , iXi lu  and X(j,)I. into X(j,)E. = Bj'JX(j)Iu, where X~,,. = A~,~X~,. is 
also an adapted frame at the same point u E H 2~. We denote by La(H 2n) the 
set of all adapted frames X~ at all points of H 2" and consider the surjective 
map "rr from La(H 2") to H z" transforming every adapted frame X~. and point 
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u into point u. Every X,,,~. has a unique representation as X~, = A,,,"X~, (~ 
where X~ ) is a fixed distinguished basis in tangent space T(H2n). It is obvious 
that ~r-l(~ ~ C H z", is bijective to ~ X GL.+.(R). We can transform 
La(H z") in a differentiable manifold taking (u ~, &,,~) as a local coordinate 
system on "rr-l(~). Now, it is easy to verify that ~ a ( H  zn) = (La(H z", H 2~, 
GL.+n(R)) is a principal bundle. We call ~ a ( H  z") the bundle of linear adapted 
frames on H 2". 

The next step is to identify the components of connection (14) in 2ga(H z") 
projected on base H 2" with components of the almost Hermitian connection 
N 
F ~  [see (8) and (9)]: 

N 

f~{ = o~e = {to~X :=  F'~• 

Introducing (38) in (31), we calculate the local 1-form 

N 
(A~)a~ = Aaal | (G~'XV~fftaalv~ 

+ faall~l~lS,,?lGVktol3131 x ~'Y"tlvlj,)gU~ 

where 

(38) 

(39) 

is the standard distinguished basis in Lie algebra of matrices cM.+~(R) with 
(Ai i l )aa I : ~ia~ilal and (A(o(jO)bb I = 80)b~(jOb ~ being the standard basis in 
q31(R~). We have denoted the curvature of connection (38), considered in 
(39), as 

fftat = Asaj Q fftaal~,,X ~ A X ~' (40) 
u 

where fftaal~ = R,~t~',~ [see the almost Hermitian curvature (12)]. 

5.2. The Bundle of Adapted Affine Frames on H2~: 
s~la(H an) = (Aa(H2"), Afn+n(2~), H 2n) 

Besides ~ a ( H  2") with GL-space H 2n, another bundle is naturally related, 
the bundle of adapted affine frames with structural group Afn§ being a 
semidirect product of GLn+n(R) and distinguished R n+~, Afn+~(R) = GL~+~(R) 
| R ~+'. Because as linear space the Lie algebra af~+n(R) is a direct sum of 
~31n+~(R) and R ~+~, we can write forms on ,~ta(H 2") as O = (Oi, 02), where 
O t is the ~/n+,,(R) component and 02 is the R n+~ component o f  the form 0 .  
Connection (38), ~ in ~a(H2~), induces the Caftan connection ~ in ~/a(H2"); 
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see the isotropic case in Popov (1975), Popov and Daikhin (1975, 1976), 
and Bishop and Crittenden (1965). This is the unique connection on s~a(H 2") 
represented as i'12 = (D~ • where • is the shifting form and i: s~a --) ~ a  
is the trivial reduction of bundles. If s~ ) is a local adapted frame in 5~a(HZn), 
then =c0) i o s~ is a local section in sla(H 2") and 

(9.~) = s~f~ = ( ~ ,  x~) (41) 

( ~ t )  = s ~  = (Rat, T~z) (42) 

where X = ea | x % X  u', G,~f~ = X%,Xf~f;qa$ ('qa~ is diagonal with "qaa = --- 1) 
is a frame decomposition of metric (7) on H 2", ea is the standard distinguished 
basis on R ~+", and the projection of torsion, Tat, on base H 2" is defined as 

T~ = dxat + f ~  A X~ + Xat A ~at 

= e,~ | ~ T6'~.~,X p" A X" (43) 
IxCv 

For a fixed local adapted basis on ~ C H 2" we can identify components 
Ta~ of torsion (43) with components of torsion (11) on H 2", i.e., T a ~  = 
N 

T ~ .  By straightforward calculation we obtain 

(A~t)~ = [(A~t)~t, (R'r)~ + (Ri)~] (44) 

where 

(Ri)at = *~I[X~, *c~t~at] 

Form (Ri)~ from (44) is locally constructed by using components of the Ricci 
tensor [see (13)] as follows from decomposition on the local adapted basis 
X ~ = ~u~: 

N 
(Ri)at = ea | (-l)2n+lRx~GaX~u~ (45) 

We remark that for isotopic torsionless pseudo-Riemannian spaces the 
requirement that (A~t)~t = 0, i.e., imposing the connection (38) to satisfy 
Yang-Mills equations (26) [equivalently, (32) or (34)], we obtain (Aldovandi 
and Stedile, 1984; Popov, 1975; Popov and Daikhin, 1975, 1976) the equiva- 
lence of the mentioned gauge gravitational equations with the vacuum Einstein 
equations Rij = 0. In the case of GL-spaces with arbitrary given torsion, 
even considering vacuum gravitational fields, we have to introduce a source 
for gauge gravitational equations in order to compensate for the contribution 
of torsion and to obtain equivalence with the Einstein equations. 
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5.3. A Gaugelike Form of Gravitational Field Equations on H z" 

Considerations presented in Sections 5.1 and 5.2 constitute the proof of 
the following result. 

Theorem. The Einstein equations (13) for the almost Hermitian model, 
H 2n, of the generalized Lagrange space M ~ are equivalent to Yang-Mills 
equations 

(A~t) = ~- (46) 

for the induced Cartan connection 12 [see (38), (41)] in the bundle of local 
adapted affine frames ~ a ( H  2") with source ~-~a constructed locally by using 

N 

the same formulas (44) [for (A~t)at], where R,~ is changed by the matter 
N 

source T,~ - �89 

6. NONLINEAR DE SITTER GAUGE GRAVITY W I T H  L O C A L  
ANISOTROPY 

The equivalent reexpression of the Einstein theory as a gaugelike theory 
implies, for both locally isotropic and anisotropic space-times, the non- 
semisimplicity of the gauge group, which leads to a nonvariational theory in 
the total space of the bundle of locally adapted affine frames. A variational 
gauge gravitational theory can be formulated by using a minimal extension 
of the affine structural group :~fn+,,(R) to the de Sitter gauge group Sn+n = 
SO(n + n + 1) acting on distinguished R n+~+l space. 

6.1. Nonlinear Gauge Theories of de Sitter Group 

Let us consider the de Sitter space E2, as a hypersurface given by the 
equations XlAsuAu 8 = --I 2 in the fiat 2n-dimensional spaces enabled with 
diagonal metric The, ~aa = • 1 (A, B, C . . . .  = 1, 2 . . . . .  2n + l), where 
{u z } are global Cartesian coordinates in R2n+t; I > 0 is the curvature of de 
Sitter space. The de Sitter group S<~) = SO(~)(2n + 1) is defined as the 
isometry group of E2n-space with n(2n + 1) generators of Lie algebra ~ O<~)(2n 
+ 1) satisfying the commutation relations 

[MAB, MCD ] =- TIAcMBD -- "qBcMAD -- TIADMBc -}- "qBDMAc (47) 

Decomposing indices A, B . . . .  as A = (d, 2n + 1), B = ([3, 2n + 1), 
. . . .  the metric "qAB as "qA8 = (qq@, "qr162 and operators MAB as Ma~ 
= ~aB and Pa = l-lME,~+l,a, we can write (47) as 

[~a~, ~ ]  = - q ~  - n ~ a ~  + ~ q ~  - n a ~  

[P,~, P~] = -l-2o~a~, [Pa, o~B~] = "qa~P-~ - "qa-~P~ 
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where we have indicated the possibility to decompose 30(n~(2n + 1) into a 
direct sum, ~O(n)(2n + 1) = ~ O(~)(2n) G V2~, where V2, is the vector space 
stretched on vectors P,i. We remark that s = S(n)/L(~), where L(~) =- SO(~)(2n). 
For ~qaB = diag(1, - 1 ,  - 1 ,  - 1 )  and Sm = SO(l,  4), SO(l, 3) = /-.6 is the 
group of Lorentz rotations. 

Let E(H 2~, R 2~+1, S(~), P) be the vector bundle associated with principal 
bundle P(S(n~, H ~) on H2"-spaces. The action of the structural group S(~) on 
E can be realized by using (2n + 1) • (2n + 1) matrices with a parametrization 
distinguishing subgroup L(~): 

B = bBL (48) 

where 

L ~ 0 

L e L(~) is the de Sitter bust matrix transforming the vector (0, 0 . . . . .  p) 
E R 2n+I into the arbitrary point (W, V 2 . . . . .  V2n+l) ~ s C R 2n+1 with 
curvature p(VAV A = _p2, V a = tAp). Matrix b can be expressed as 

. . l 

t(3 : ten+lj 

The de Sitter gauge field is associated with a linear connection in E, 
i.e., with a ~O(~>(2n + 1)-valued connection I-form on H2": 

(~=(~a,~ 06 ~ )  (49) 

where o~af~ e ~ O~)(2n), O a ~ R 2", 06 = "qfia0 a. 
Because S(~>-transfonns mix ma~ and 0 a fields in (49) [the introduced 

parametrization is invariant on action on SO(~)(2n) group] we cannot identify 
N 

t0a~ and 0 a, respectively, with the connection F ' ~  and the fundamental form 
X = in H 2n [as we have for (38) and (41)]. To avoid this difficulty we consider 
(Tseytlin, 1982; Ponomarev et al., 1985) a nonlinear gauge realization of the 
de Sitter group S;n>, namely, we introduce into consideration the nonlinear 
gauge field 

fl =b-lOb + b-ldb = Fal~ 0 a (50) 
106 O 



1 9 7 2  V a c a r u  a n d  G o n c h a r e n k o  

where 

Fa3 = ~oa~ _ (t~Dt~ _ t~Dta)/(1 + /2n+t) 

0 a = t2n+l() a + D t  a - l a ( d t  2n+l + 0. :~) / (1  + t 2n+l) 

Dt a = dt a + o3a6t a 

The action of the group S('q) is nonlinear, yielding transforms F'  = 
L 'F(L ' ) - I  + L,d(L,)-~, O' = LO, where the nonlinear matrix-valued function 
L' = L'(t  ~, b, Br) is defined from Bb = b'BE [see parametrization (48)]. 

U 
Now, we can identify components of (50) with components of F ~ v  and 

Xa,~ on H 2n and induce in a consistent manner on the base of bundle E(P, 
R2L S('q), H 2~) the almost Hermitian Lagrange geometry. 

6.2. Dynamics of the Nonlinear S(-q)-Gravity with Local Anisotropy 

Instead of the gravitational potential (38), we introduce the nonlinear 
gravitational connection [similar to (50)] 

F = F ~  1 ~  a 
to ~xr (5 t) 

N 
* : ^ " a c r  X a where Fa~ Fa~Su ~, F ~  = X%x~$F~'~ + Xr = Xa~Su ~, and G ~  

= Xa~X~ffqag, and nqs ~ is parametrized as 

(o 0) "l]dtg = J "l~ij = ~ Q ( i ) ( j )  = diag(1, - 1 . . . . .  - 1) 
"I](i)(j) 

10 is a dimensional constant. 
The curvature of (51), fit = dF + F A F, can be written as 

a : io;;; . . . .  

N 
^ ^ IO'D^& .R, ,Ix ^ " where "r:'~ = X a ^ X~, ~t '~ = ~-<,~ ~o,,  ^ 8u ~, and ~ t~ '~  = X~X,~R~.~ 

[see (12), the components of HZn-curvature]. The de Sitter gauge group is 
semisimple and we are able to construct a variational gauge gravitational 
locally anisotropic theory [bundle metric (23) for S(n)-grou p is nondegenerate]. 
The Lagrangian of the theory is postulated as 

L = L(G ) + L(m ) 

where the gauge gravitational Lagrangian is defined as 



Y M  Fields on Generalized Lagrange Spaces 1973 

1 

1 1 1 
~(c) = ~ Ta~T6 ~ + ~ t ( ~ a ~ a  ~ - 1- 7 (R(F) - 2Xl) (53) 

N 

T a ~  = x a ~ T ~  [the gravitational constant 12 in (53) satisfies the relations 
12 = 210zh, X~ = -3/10], Tr denotes the trace on &, [3 indices, and the matter 
field Lagrangian is defined as 

1 
L(m) = - 2  T i f f / x  *ar = ~(~)IG[ ~/~asu 

1 
~(m) = -~ Fa (~ S(~ ~ - t~ aha~ (54) 

The matter field source r is obtained as a variational derivation of ~(,~) on 
F and is parametrized as 

r = s% -~ t  ~ (55) 
]-lot~ 

with t a = ta~au ~ and Sa~ = Sag~8u ~ being respectively the canonical tensors 
of energy-momentum and spin density. Because of the contraction of the 
"interior" indices fit, ~, in (53) and (54) we used the Hodge operator *c 
instead of *h (hereafter we consider *o = *). 

Varying the action 

S = f ] a ll%2"u (~(o) + ~(m)) 

on the F-variables (51), we obtain the gauge-gravitational field equations: 

d(*~t) + F ^ (*~)  - (*~)  ^ F = - X ( * r  (56) 

Specifying the variations on Fag and ha-variables, we rewrite (56) as 

2k 
@(*~) + ~ (~(*w) + X ^ (*T~) - (*7) ^ X r = - k  * S (57) 

~ ( * T )  - (*~t)  ^ X - ~ ( * ~ )  ^ X = -~ *t + ~ * "r (58)  

where 

1 
T r = {Ta, Ta = "qa~T ~, T ~ = ~ T ~ u  ~ A ~u ~} 

X r = {Xa; Xa = "qa~• X ~ = X ~ u ' } ,  ~ = d + I ~ 
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([~ acts as Fs~  on indices ~, 8 . . . .  and as [ ' ~  on indices y, 8 . . . .  ). In (58), 
"r defines the energy-momentum tensor of the S(n)-gauge gravitational field F: 

1 ( 1 ) 
%~([') = ~ Tr ~ - ~t ~ G ~  (59) 

Equations (56) [or equivalently (57), (58)] make up the complete system 
of variational field equations for nonlinear de Sitter gauge gravity with local 
anisotropy. They can be interpreted as a generalization of Miron's equations 
(13) for H2n-gravity [equivalently, of gauge gravitational equations (46)] to 
a system of gauge field equations with dynamical torsion and corresponding 
spin-density source. 

Tseytlin (1982) presents a quantum analysis of the isotropic version of 
equations (57) and (58). Of course, the problem of quantizing gravitational 
interactions is unsolved for both variants of locally anisotropic and isotropic 
gauge de Sitter gravitational theories, but we think that the generalized 
Lagrange version of S(n)-gravity is more adequate for studying quantum 
radiational and statistical gravitational processes. This is a matter for fur- 
ther investigations. 

Finally, we remark that we can obtain a nonvariational Poincar6 gauge 
gravitational theory on GL-spaces if we consider the contraction of the gauge 
potential (51) to a potential with values in the Poincar6 Lie algebra 

ilol• ~ F 

Isotropic Poincar6 gauge gravitational theories are studied in a number of 
papers (see, for example, Walner, 1985; Tseytlin, 1982; Luehr and Rosen- 
baum, 1980; Ponomarev et  al., 1985; Aldovandi and Stedile, 1984). In a 
manner similar to considerations presented in this work, we can generalize 
Poincar~ gauge models for spaces with local anisotropy. 

7. GRAVITATIONAL GAUGE INSTANTONS WITH LOCAL 
ANISOTROPY 

The existence of self-dual, or instanton, topologically nontrivial solutions 
of Yang-Mills equations is a very important physical consequence of gauge 
theories. All known instanton-type Yang-Mills and gauge gravitational solu- 
tions (Tseytlin, 1982; Ponomarev et  al., 1985) are locally isotropic. A varia- 
tional gauge-gravitational extension of Miron H2n-gravity makes possible a 
straightforward application of techniques of constructing solutions for first- 
order gauge equations for the definition of locally anisotropic gravitational 
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instantons. This section is devoted to the study of some particular instanton 
solutions of H2n-gauge gravitational theory on GL-space. 

Let us consider the Euclidean formulation of the S(~)-gauge gravitational 
theory by changing gauge structural groups and flat metric: 

SO(~)(2n + 1) ~ SO(2n + 1), SO(~)(2n) ---> SO(2n),  "I]AB ~ - -  ~AB 

Self-dual (anti-self-dual) conditions for the curvature (52) 

f i  = *fi  ( -*f i t )  (60) 

can be written as a system of equations 

( f ia  (~ _ loZq.ra ~) = ++_,(fidL(3 _ lo2va (O (61) 

T a = +-*T a (62) 

(the " - "  refers to the anti-self-dual case), where the " - "  before 16 -z appears 
because of the transition of the Euclidean negatively defined metric -~afi, 
which leads to Xa~ ---> ixa,~re, "rr ---> - w e  (we shall omit the index E for 
Euclidean values). 

For solutions of (61) and (62) the energy-momentum tensor (59) is 
identically equal to zero. Vacuum equations (56) and (57), when the source 
is ~ ~ 0 [see (55)], are satisfied as a consequence of generalized Bianchi 
identities for the curvature (52). The mentioned solutions of  (61) and (62) 
realize a local minimum of the Euclidean action 

S =  1 f IG[1/2~2,u{(R(F ) _ lo2,rr)z + 2T2} (63) 

w h e r e  T 2 = 7"~p,~T6 ~v is extremal on the topological invariant (Pontryagin 
index) 

1 f T r ( f i / \ f i ) =  1 I T r ( ~ A ~ )  
p~ - 8,rr 2 --8w--'5 

For the Euclidean de Sitter spaces, when 

f i  = 0 r = 0, Rag~ - l~ X[~X~]~ (64) 

we obtain the absolute minimum, S = 0. 
= (21lo)gl~G~l~ torsion vanishes. Torsionless We emphasize that for R ~  2 

instantons also have another interpretation. For T~v  = 0 contraction of 
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equations (61) leads to Einstein equations with cosmological k- term (as a 
consequence of generalized Ricci identities): 

N N 3 N N 

R ~  - R ~  = ~ {R[~f~]v - R ~ I ~  

N N 

+ R[~][~ - R[~[~]~} 

So, in the Euclidean case the locally anisotropic vacuum Einstein equations 
are a subset of instanton solutions. 

Now, let us study the SO(n) solution of equations (61) and (62). We 
consider the spherically symmetric ansatz 

Fag~ = a(u)(uag~r - u~g~) + q(u)eag~,u ~ 

Xa~ = f(u)g'~o, + n(u)uau,~, N~(u) - O, (65) 
^ 

where u z = j%a u ~, u = u'~u ~ G~,~ = x~x~ + YJJ3, and a(u), q(u), f (u)  and 
n(u) are some scalar functions. Introducing (65) into (61) and (62), we 
obtain, respectively, 

u( + dq - _ q2) + 2(a + q) + (lo)-lf2 = (66) 

2d(a -~ q)/du + (a ~ q)2 _ lolfn = 0 (67) 

df  + f (a  ~ 2q) + n(au - 1) = 0 (68) 27. 
The traceless part of the torsion vanishes because of the parametrization 

(65), but in the general case the trace and pseudotrace of the torsion are not 
identical to zero: 

T ~ = q(~ df/du + n - a ( f  + un)) 

~'~ = q(1)u~(2qf) 

q(0) and q(t) are constant. Equation (62) or (68) establishes the proportionality 
of T" and i~ .  As a consequence we obtain that the SO(2n) solution of (65) 
is torsionless if q(u) = 0 or f (u)  = 0. 

Let first analyze the torsionless instantons, T ~  = 0. If  f = 0, then 
from (67) one has two possibilities: (a) n = 0 leads to nonsense because 
X~ = 0 or G,~ = 0. (b) a = u-1 and n(u) is an arbitrary scalar function; we 
have from (67) a ~ q = 2/(a + C ~) or q = +_2/u(u + Ce), where C = const. 
If  q(u) = 0, we obtain the de Sitter space (64) because equations (66) and 
(67) impose vanishing of both self-dual and anti-self-dual parts of  (~ta~ - 
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~rr'~), so, as a consequence, ~e,~ _ Fow,~fi ___ O. There is an infinite number 
of SO(2n)-symmetr ic  solutions of (64): 

= 10[a(2 - au)] I/2, n = 10{2 f 

a(u) is a scalar function. 

da + a 2 "~ 
du [a(2 - au)] 112 J 

To find instantons with torsion, T ' ~  ~ 0, is also possible. We present 
the SO(4) one-instanton solution, obtained in Ponomarev et al.(1985) [which 
in our anisotropic case can be rewritten for H4-space parametrized by local 
coordinates (x 1, x ~, yi, y~), with u = xixi + x2x~ + yly i + y2y~]: 

a = ao(u + c2) -1, q = -T-qo(u + cZ) -1 

f = lo(otu + 13)la/(u + c2), n = Co/(U + C2)('~/U + ~)1/2 

where 

a0 = -1/18, qo = 5/6, et = 266/81, 13 = 8/9 

"y = 10773/11858, 8 = 1458/5929 

We suggest that local regions with T ~  v ~ 0 are similar to Abrikosov 
vortexes in superconductivity and the appearance of torsion is a possible 
realization of the Meisner effect in gravity [for details and discussions on 
the superconducting or Higgs-like interpretation of gravity see Tseytlin (1982) 
and Ponomarev et al. (1985)]. In our case we obtain a locally anisotropic 
superconductivity and we think that the formalism of gauge locally anisotropic 
theories may even work for some models of anisotropic low- and high- 
temperature superconductivity (Vacaru, 1991). 

8. O U T L O O K  AND CONCLUSIONS 

In this paper we have reformulated the fiber bundle formalism for both 
Yang-Mills and gravitational fields in order to include into consideration 
space-times with local anisotropy. We have argued that our approach has the 
advantage of making manifest the relevant structures of the theories with 
local anisotropy and putting greater emphasis on the analogy with isotropic 
models than the standard coordinate formulations in Finsler geometry. 

Our geometrical approach to locally anisotropic gauge and gravitational 
interactions are refined in such a way as to shed light on some of the more 
specific properties and common and distinguishing features of the Yang-Mills 
and Einstein fields. As we have shown, it is possible to make a gaugelike 
treatment for both models with local anisotropy (by using correspondingly 
defined linear connections in bundle spaces with semisimple structural groups, 



1978 Vacaru and Goncharenko 

with variants of nonlinear realization and extension to semisimple structural 
groups, for gravitational fields). 

We have proposed a gauge interpretation of locally anisotropic gravity 
starting from the almost Hermitian model of generalized Lagrange spaces. 
This construction is more general than that based on gauge fields in the 
Finsler bundle on space-time (Asanov and Ponomarenko, 1989) (see Remark 
1 in this paper) and differs essentially from other Finsler variants of gravity 
(Matsumoto, 1986; Asanov and Ponomarenko, 1989). 

We note that there are a number of arguments for the necessity to take 
into account physical effects of possible local anisotropy. The first one is the 
well-known result that a self-consistent theoretical description of radiational 
processes in classical field theories is possible by adding high derivation terms 
(for example, electromagnetic radiation of accelerating charged particles in 
classical electrodynamics is modeled by introducing additional terms propor- 
tional to the third time derivative of the coordinates). The second, very 
important argument for investigations of quantum models on tangent bundles 
is the unclosed character of quantum electrodynamics; for values of momenta 
p .-~ oo the renormalized amplitudes of quantum electrodynamic processes 
also tend to w, which requires additional (less motivated from a physical 
point of view) suppositions and modifications of fundamental principles of 
the theory. We have to introduce similar, but more complicated, considerations 
in order to model gravitational radiational dissipation in all variants of classi- 
cal and quantum gravity and quantum field theories with high derivatives. 
That is, a careful analysis of physical processes when the weak reaction of 
classical and quantum systems interacting or being measured is not negligibly 
small requires extensions of the geometrical background of the theories. 
Such generalizations seem to be more appropriate for describing statistical 
gravitational and gauge effects (Vlasov, 1966; Vacaru, 1995a) in classical 
and quantum field theory. 

Of course, physical features of models with local anisotropy do not yet 
have strong experimental support [except for models of continuous media 
with dislocations and disclinations (Kadic and Edelen, 1983)]. The physical 
status of nonlinear connection [see the covariant derivation (2)] is still unclear, 
as is the physical interpretation of the energy-momentum tensor on H 2n- 
spaces [the source of H2n-gravitational Einstein equations (13) and the manner 
of formulation of conservation laws on spaces with local anisotropy require 
additional analyses]. We hope that these questions will be solved in the 
framework of models with turbulent space-time, curved momentum, or phase 
spaces. The first step is to propose the corresponding geometrical formalism 
and to formulate the basic principles and field equations for fundamental 
interactions (in this work we have paid attention to gauge and gravita- 
tional fields). 
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Finally, we emphasize that we have developed new types of gauge and 
gravitational theories emerging from local anisotropic considerations and that 
further investigations in the direction of formulating classical and quantum 
field theory on generalized Lagrange spaces are in progress (Miron and 
Kawaguchi, 1991; Miron and Anastasiei, 1993; Vlasov, 1966; Miron, 1985; 
Vacaru, 1995a,b; Vacaru and Ostaf, 1993). 
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